Repair of Segmental Defects with Nano-hydroxyapatite/Collagen/ PLA Composite Combined with Mesenchymal Stem Cells

نویسندگان

  • D. S. Zhou
  • K. B. Zhao
  • Y. Li
  • F. Z. Cui
  • D. S. ZHOU
  • K. B. ZHAO
چکیده

The aim of the present study was to investigate and compare the capacity of fresh-frozen allogeneic bone, nano-hydroxyapatite/collagen/PLA (nHAC/PLA) scaffold, and nHAC/PLA scaffold loaded with bone marrow mesenchymal stem cells (BMSCs) in inducing bone formation. A 10mm segmental rabbit radial defect was surgically created. The animals were divided into four groups in which the defect was either left untreated, or filled with the abovementioned three grafts. The animals were euthanized at 2, 4, 6, 8, 12, and 18 weeks. Radiographic and histologic analyses were performed on the harvested tissue. We show that nHAC/PLA composite combined with mesenchymal stem cells could enhance and accelerate bone formation in segmental defects of rabbits. nHAC/PLA composite is an ideal bone graft; implanting nHAC/PLA composite combined with mesenchymal stem cells is a potential method for surgical treatment of bone defects. *Author to whom correspondence should be addressed. E-mail: [email protected] Figure 2 appears in color online: http://jbc.sagepub.com Journal of BIOACTIVE AND COMPATIBLE POLYMERS, Vol. 21—September 2006 373 0883-9115/06/05 373–12 $10.00/0 DOI: 10.1177/0883911506068554 © 2006 SAGE Publications © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution. at PENNSYLVANIA STATE UNIV on April 10, 2008 http://jbc.sagepub.com Downloaded from

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds

Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...

متن کامل

Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite.

A bone scaffold material (nano-HA/ collagen/PLA composite) was developed by biomimetic synthesis. It shows some features of natural bone both in main composition and hierarchical microstructure. Nano-hydroxyapatite and collagen assembled into mineralized fibril. The three-dimensional porous scaffold materials mimic the microstructure of cancellous bone. Cell culture and animal model tests showe...

متن کامل

Co-Culture of Mesenchymal Stem Cells with Mature Chondrocytes: Producing Cartilage Construct for Application in Cartilage Regeneration

Background: Cell-based treatment approach using differentiated mesenchymal stem cells (MSCs) and mature chondrocytes has been considered as an advanced treatment for cartilage repair. We investigated the differentiated level of these two cell types that is crucial for their repair capacity for cartilage defect at a co-culture micro mass system. Methods: Passaged-2 MSCs isolated from the mouse b...

متن کامل

PLLA/HA Nano composite scaffolds for stem cell proliferation and differentiation in tissue engineering

Abstract Due to their mulitpotency, Mesenchymal stem cells (MSCs), have the ability to proliferate and differentiate into multiple mesodermal tissues. The aim of this study was to isolate MSCs from human Umbilical Cord (hUCMSCs) to determine their osteogenic potential on nanofibrous scaffolds. To this end, Poly (L-lactic acid) (PLLA)/Nano hydroxyapatite (HA) composite nanofibrous scaffolds were...

متن کامل

Enhanced bone regeneration using an insulin-loaded nano-hydroxyapatite/collagen/PLGA composite scaffold

Insulin is widely considered as a classical hormone and drug in maintaining energy and glucose homeostasis. Recently, insulin has been increasingly recognized as an indispensable factor for osteogenesis and bone turnover, but its applications in bone regeneration have been restricted because of the short periods of activity and uncontrolled release. In this study, we incorporated insulin-loaded...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006